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A method is reported for calculation of a series of self-consistent excited doublet and 
triplet states by the CNDO/S method. Various problems of obtaining convergence are 
discussed, and examples are given of the rates of convergence in various manners of 
performing these calculations. The handling of symmetry is discussed, and it is shown 
how symmetry properties are used to make many states amenable to calculation by the 
variational principle. 

We would like to report an extension of the CNDOjS method [l] for the 
calculation of spectra to open-shell systems, and in particular to the direct mini- 
mization and self-consistent calculation of doublet and triplet states. We have now 
developed a method by which we are in a position to make a direct minimization 
of doublet and triplet states of molecules by the restricted Hartree-Fock method [2]. 
Although the method of calculation is probably general, we have worked entirely 
within the CNDO/S scheme of semi-empirical parameterization. 

The open-shell method used is that of Roothaan [2], which, of course, is not new. 
However, we believe that we have for the first time achieved the calculation, for 
large molecules, of not only the lowest state of a given manifold but of a whole 
series of states, provided they can be described in terms of a single configuration, 
that is, a single Slater determinant. A number of serious computational problems 
arise in these calculations, and in this paper we would like to report on the handling 
of these. 

Preliminary results for a few compounds have already been reported [3-51, and 
further extended numerical results will be reported elsewhere [6]. 

ORBITAL CROSSING 

In early attempts to do open-shell calculations for the lowest triplet states of some 
azines, we ran into serious convergence problems. These problems were readily 
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identified as arising from a crossing of orbital energy levels during the iterative 
process of calculation; thus, when the highest two occupied orbitals are ener- 
getically close to each other, as they are for instance in pyridine, upon iterative 
calculation of the lowest triplet states we find that the lowest two orbitals sometimes 
cross in energy. If we use the molecular Aufbau principle to calculate the Fock 
matrix for the next iteration after such a crossing has occurred, we, of course, are 
beginning in effect a new calculation which attempts to converge on a different 
state than the one which the previous calculation approached. If the process of 
iteration is continued and the two orbitals continue to cross back and forth, we 
find that we alternately attempt an approach to the two states and, therefore, 
obtain a oscillatory behavior rather than a convergent one. Roothaan originally 
had proposed to overcome this problem by transforming the basis set of the cal- 
culation into a set of symmetry adapted orbitals. While such a calculation is 
perfectly feasible, it is unpleasant, requires a considerable amount of groundwork, 
and is difficult to program in a general fashion which is applicable to the different 
symmetry types of a given point group and to molecules in different point groups. 

We have overcome this problem in an entirely different manner: we have 
programmed the symmetry behavior of our orbital into our program. The program 
first determines the point group under which the molecule in question, in the 
geometry assumed, transforms. We had previously incorporated this determination 
into our CNDO/S closed-shell program. Additionally, in this program we determine 
for each orbital the irreducible representation which has the same transformation 
properties as the orbitals. In the open-shell program we now make this symmetry 
determination at each iteration, and we enter into the program as input the number 
of doubly and singly occupied orbitals which transform as any given irreducible 
representation. With the symmetry behavior of each orbital available, we can now 
use the Aufbau principle separately for each irreducible representation having first 
enough orbitals doubly and then singly occupied to take care of all the electrons 
required in the configuration. Use of this technique has immediately eliminated 
all problems of orbital crossing. 

HIGHER EXCITED STATES 

With this symmetry determination of each orbital and the use of the Aufbau 
principle to the separate irreducible representations available, we are now in a 
position to specify not only the lowest excited state of any given multiplicity 
manifold but equally well higher configurations of such manifolds. Some restric- 
tions still exist; thus for doublet states we can only calculate states described by 
two types of conficurations: (1) A states [7], in which an electron is promoted from 
a doubly occupied orbital to the orbital occupied by the single unpaired electron. 
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(2) B states, in which the single unpaired electron is promoted to a higher virtual 
orbital. The further restriction applies to both cases that the two orbitals involved 
in the transition transform as different irreducible representations, in other words 
that the transition is not totally symmetric. States in which an electron from a 
doubly occupied orbital is promoted to a virtual orbital are inaccessible to this 
calculation since for such states a single configuration gives rise, beside a quartet 
state, to two doublet states, neither of which can be expressed as a single deter- 
minant. Triplet states available to calculation include all those in which an electron 
from the highest doubly occupied orbital of any given symmetry type is promoted 
to the lowest virtual orbital of any symmetry type. Thus, for instance, in point 
group G, , which has four irreducible representations, we have accessible to 
calculation 16 singly excited triplet states provided both doubly occupied and 
virtual orbitals exist in each representation. For a C,, molecule with a doublet 
ground state, we can calculate six singly excited doublet states. In principle, of 
course, we can also calculate many multiply excited states; such states, however, 
appear currently of little interest. Their calculation, which has been accidentally 
undertaken at times, has not produced any new problems or difficulties. 

CONVERGENCE PROBLEMS 

With the technique outlined, we have been able to make calculations for a large 
number of lower excited states of many molecules. However, we have found that 
for higher excited states we occasionally run into very serious problems of con- 
vergence and loss of symmetry. Both of these can be overcome by relatively simple 
means. 

Loss OF SYMMETRY 

As iterations proceed, we have frequently noted that the accumulation of 
rounding errors has caused the symmetry of the orbitals to be lost so that a deter- 
mination of the appropriate irreducible representations became impossible. The 
problem does not occur in every case but when it occurs, of course, it makes it 
impossible to proceed with the calculation. In order to overcome this problem, we 
have inserted a resymmetrization and renormalization procedure at each iteration 
at the point at which the symmetry of a given orbital is determined. All coefficients 
that should be numerically equal in an absolute sense are artificially made equal 
by averaging and the orbital is then renormalized. We have also demonstrated 
that in the converging cases this procedure has not led to any change of the results 
either in terms of energy or in terms of the density matrix obtained in the final 
result (cf. Table II below). 
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CONVERGENCE PROBLEMS 

While we have never in the many thousands of calculations we have made in 
closed-shell systems encountered a case which failed to converge, in the open-shell 
system we have found that some calculations fail to converge. The failure to 
converge is normally signalled by a sharp increase in total energy which is accom- 
panied by an oscillatory behavior of total energy. Examination of the density 
matrix shows that in such cases, the entire charge of the molecule at alternate 
iterations resides in one or another half of the molecule. We have attempted a 
number of routes to overcome this problem. While we have no guarantee that any 
of our solutions will work in every case, we have found that we have been able to 
achieve convergence in each case attempted by one or another of these techniques. 

INITIAL DENSITY MATRIX 

The Fock Matrix for the first iteration and the closed-shell CNDO/S program 
is generated from a diagonal density matrix in which each orbital has a number of 
electrons corresponding to the atomic number of the atom on which it resides. 
Orbitals are entirely filled with whole numbers of electrons and no special effort is 
made to evenly distribute electrons where some orbitals would otherwise be 
doubly, others singly occupied. We shall refer to this type of initial density matrix 
as a diagonal density matrix. In the closed-shell method, this has never caused any 
problems. Use of this diagonal density matrix is equivalent to the performance of 
a Hiickel calculation as a first step, and use the resulting density matrix to initiate 
the iterative SCF calculation. We believe that our procedure, besides simplicity, 
has the advantage over an external Hiickel calculation that the parameters are 
automatically chosen to be consistent with the later steps. 

Our first attempt to overcome our convergence problems was to start, not with 
a diagonal density matrix, but to begin iterations with the density matrix of the 
ground state molecule. For this purpose, a ground-state calculation was first 
performed, the density matrix written on tape or disk and then used in the open- 
shell calculation. We found that in a number of cases, this procedure permitted 
very rapid convergence; however, in others the same divergent behavior recurred. 
Thus, this appears to be an expedient which is sometimes useful but which will 
not provide a general solution. 

An alternate to this procedure has been to begin iteration with the density 
matrix of the corresponding state derived from a virtual orbital calculation. For 
this purpose, the ground-state wave functions were written on disk and used to 
generate a density matrix for the first orbital iteration. This expedient, although 
apparently sounder in principle, had no apparent advantage over the density matrix 
procedure. Examples of both procedures at work are given in Table III (below). 

581/14/2-6 
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DENSITY MATRIX AVERAGING 

In closed shell CNDO/S calculations, considerable convergence problems have 
been encountered, particularly when using the Mataga-Nishimoto approximation1 
to electron repulsion integrals [8]. The most common inhibition of rapid con- 
vergence appears to be an oscillatory behavior resembling that of an undamped 
spring. Although several elegant methods to improve convergence of iterative 
SCF procedures exist in the literature [9], we have devised a particularly simple and 
convenient one, which has the added advantage not to require extra storage in 
the computer. 

This method consists of averaging the density matrix of the nth and (n - I)th 
iteration before calculation of the Fock matrix for the (n + I)th iteration. To 
apply this averaging procedure only when an oscillating convergence is 
encountered, two tests are introduced: 

where Es is the total electronic energy obtained in the ith iteration. If the condition 
of Eq. 1 is satisfied, an oscillatory behavior obtains; if the condition of Eq. 2 is 
satisfied, the calculation appears to be on a converging path. In the closed-shell 
program, if both conditions are satisfied, all elements PLY of the density matrix 
of the ith iteration are averaged with the corresponding elements PL;’ of the last 
previous iteration, 

PLY = (Pi” + P3/2, (3) 

and the new density matrix PLY is used in the generation of the Fock matrix for 
the (i + 1)th iteration. In the closed-shell CNDO/S program, this density matrix 
averaging has improved rates of convergence by as much as a factor of 3. Both 
tests were needed, since density matrix averaging begun too early was much less 
efficient, and could even give rise to a considerable slow-down of convergence. 

In the open-shell calculations, we have also introduced this same density matrix 
averaging. Here, again, we find that averaging forces convergence in some cases 
in which it does not otherwise occur. In some cases, an apparently converging 
[Eq. 21 oscillatory behavior [Eq. l] is not attained until the calculation has 
apparently diverged. At this point, as indicated above, upon alternate iterations 

1 Some laboratories have reported problems of failure to converge in the case of closed-shell 
ions. Although we cannot give a rationale for this procedure, our program sets up the original 
diagonal density matrix for the neutral compound corresponding to the ion and adjusts the total 
electron count at the first iteration. With this procedure, we have never failed to obtain 
convergence in a closed-shell ion. 
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the total electron population migrates from one half of the molecule to the other, 
and averaging the density matrices of two such divergent populations produces 
more reasonable density matrix; in some cases this procedure has led to con- 
vergence. However, it seems philosophically and economically unreasonable to go 
through a divergent path to attain convergence. 

We finally removed the second test [Eq. 21 so that any form of oscillatory 
behavior would force density matrix averaging. We found that this was by far 
the best procedure. Under this procedure, density matrix averaging in the divergent 
case begins almost immediately, that is, after the third or fourth iteration, never 
allows the fully oscillating condition to arise, and has forced convergence in every 
case we have tried. It appears then that density matrix averaging together with the 
resymmetrizing of eigenvectors is the method of choice to accelerate and force 
convergence in these open-shell situations with which we are dealing here. 

CONVERGENCE TESTS 

We have tried three different types of convergence tests: (a) convergence by total 
energy; (b) convergence for all occupied orbital energies; (c) convergence of the 
density matrix. The total energy and orbital energy convergence tests are made to 
a relative precision. That is, the convergence condition is 

I( Ejn - ql)/cjn ) < 6, for cjn > 1 
I Ejn - l T-l 1 < 6, for tin < 1 1 

for all j, 

1 P,“y - P,“;’ I < 6, for all p and v, (6) 

where eji is the orbital energy of the jth orbital after the ith iteration and 6, , 6, , 
and S3 are three constants. We usually use 

6, = 0.0001, 6, = 0.0001, 6, = 0.001. 

If the orbital energy is less than 1 eV absolute, the convergence test for the absolute 
value is uninteresting; with a range of orbital energies between -50 and +30 eV 
and an arbitrary origin, a relative test of values that are accidentally near 0 is of no 
interest. For density matrix convergence, an absolute test is used. We have found 
that orbital energy convergence, with the criterion given, in the open-shell cases 
requires many more iterations than total energy convergence. We have, however, 
verified that the variation of the total energy after its convergence has been reached 
until orbital energy convergence is reached is only of the order of a few hundredths 
of an electron volt (cf. Tables III and V). This does not exceed the precision of the 
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calculations since the total energies calculated are of the order of thousands 
of electron volts and the precision of the calculations is estimated to be of the order 
of six significant figures. Thus, unless either orbital energies or the wave functions 
are of extreme importance, we believe that total energy convergence is sufficient. 
We further, in both the closed- and open-shell programs, are backing up the total 
energy convergence by a density matrix convergence. This sometimes requires 
a few, sometimes a significant number, of extra iterations but guarantees at least 
that the density matrices also have become self-consistent. We believe that with 
this we have been sufficiently cautious. We may add that in those cases where we 
average density matrices, we make one additional calculation at the end without 
averaging in order to be certain to have a self-consistent function. 

RESULTS 

In order to test the computational methods discussed in the previous section, 
we have undertaken an extensive series of calculations on the 16 available triplet 
states of the pyridine molecule and of the 7 accessible doublet states of the pyridine 
molecular ion. We have carried out these calculations under a series of ten different 
conditions. Table I lists all the various conditions used. It indicates whether or 

TABLE I 
The Conditions for Running the Various States of Pyridine and Azulene* 

Resymmetrization Convergence 
Density Matrix 

Averaging 
Initial Density 

Matrix 

A - 0 - D 
B - 0 - GS 
C 0 U vo 
D + 0 - D 
E + 0 R D 
F + 0 U D 
G + 0 - GS 
H + 0 U vo 
I + T - D 
J + T GS 
K + T - vo 
L + T R D 
M + T R GS 
N -c T R vo 
0 + T U D 
P + T U GS 
Q + T .U vo 

* See text for explanation of symbols. 
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not resymmetrization was done. In the column under density matrix, D indicates 
a diagonal density matrix, GS a ground-state density matrix, and VO a virtual 
orbital density matrix. Next, we indicate whether density matrix averaging was 
done and if so, whether it was subject to both conditions of Eqs. 1 and 2, called 
restricted and indicated by R, or only subject to condition of Eq. 1, called unre- 
stricted and indicated by U. Finally, we indicate whether convergence was orbital 
convergence (0) or total energy convergence (T). Table II gives the number of 
iterations required to reach convergence for each of the 16 triplet and 7 doublet 
states in each of the ten sets of calculations. The letter “S” indicates that the 
symmetry failed to be obeyed after the number of iterations indicated in parenthesis. 

TABLE II 

The Number of Iterations Required to Obtain Convergence According to the Criteria 
Indicated in the Text Under the Conditions Indicated in Table I 

A B C D E F G H J N 

18 
10 
29 

11 
8 
27 
26 
14 

WI 
S(8) 
S(8) 
15 
S(8) 
SW 
WO) 
W 
S(9) 
S(7) 
S(6) 

8 7 
14 14 
22s 17 
S(7) S(6) 
13 10 
S(7) S(7) 
S(7) 7s 

(a) Pyridine triplets 

9 18 14 - 
7 10 10 - 
16 29 15 - 
8 56 17 25 
16 15 15 - 
S(7) 19 14 10 
S(7) 35 22 26 
S(9) 16 15 13 
S(23) 19 27 - 
S(11) 21 24 20 
30 54 36 28 
S(22) 36 >40 33 
S(11) 21 24 20 
8 >75C 16 47 
S(4) 25 37 21 
S(4) >75D 31 >75c 

(b) Pyridine molecular ions 

2 8 7 - 
14 14 13 - 
11 22 10 - 
S(5) 15 14 11 
10 13 9 - 
S(5) 15 14 12 
S(6) 9 9 8 

12 - 9 9 
10 - 7 7 
15 - 12 12 
17 - 12 11 
15 - 11 11 
13 9 10 10 
22 19 14 14 
12 9 10 11 
27 20 17 17 
24 16 11 11 
36 - 19 19 
58 48 27 27 
24 16 11 11 
16 - 11 11 
37 17 18 18 
32 24 23 23 

7 - 7 7 
13 - 11 11 
10 - 13 13 
14 9 11 11 
9 - 9 9 
13 9 13 13 
9 8 8 8 
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In no case were more than 75 iterations attempted; where a number of iterations 
is given with a > sign, the letter “c” indicates that it appeared as if the calculation 
would converge on a larger number of itereations, while the letter “D” indicates 
that it was oscillatory and did not appear to be converging. 

A few conclusions are immediately obvious. In the absence of resymmetrization 
in a large fraction of cases, the symmetry disappears and the calculation cannot 
be completed; this is particularly true the higher the energy of the state in question. 
Resymmetrization in those cases where convergence was obtained without it does 
not affect the number of iterations required and, as we will see below, does not 
affect the results of the calculation; see columns A and D. For this reason, cal- 
culations F were not performed on those cases in which calculations B had already 
converged, since it could be anticipated that the number of iterations and the 
results would be the same. Similarly, calculations H were not performed in those 
cases where calculation C had already converged. Next, it is obvious that overall 
the most rapid convergence is achieved by total energy convergence, columns G 
and J. It appears that the manner of density matrix averaging plays no role in the 
results as the two columns, F and E, which differ only by this factor, are nearly the 
same. The effect of the initial density matrix can be obtained from the comparison 
of columns D and G and of columns F and H. In some cases, the improvement 
appears dramatic, in others marginal. If account is taken of the fact that the 
generation of an original density matrix requires a special calculation for the 
ground state, the writing of the density matrix or of the wave function on disk, 
and the rereading of this information from disk, it seems that the improvement is 
probably not sufficient to be worth using routinely unless a large number of 
states are calculated simultaneously. 

Table III gives the total electronic energies for all calculations that have con- 
verged; actually, the energies are of the order of -3470 eV, but only the last five 
significant figures are listed, without sign. Even a cursory examination of this table 
indicates unambiguously that the total energy is completely independent of the 
method of calculation used and the number of iterations required. In no row of the 
table are the deviations greater than one in the sixth significant figure. Most of them 
vary only by a few thousandths of a volt. If it is remembered that these calculations 
were performed on a 32-bit IBM machine, with a precision of slightly over seven 
significant figures, in single precision, with only the Givens Householder matrix 
diagonalization in double precision, these results are extremely comforting. It 
can certainly be concluded that the results for pyridine are reproducible to a 
minimum of six significant figures. This, of course, does not imply an accuracy to 
the tenth of the electron volts since there are systematic approximations made 
which seriously put an accuracy of this sort in doubt. 

It is particularly instructive to compare the results of columns A and D, that is, 
the results obtained with or without resymmetrization. Obviously, there is no 
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TABLE III 

The Energies Obtained for Pyridine at Convergence Under the Various Conditions 
Indicated in Table I. Energies given are -E - 34OO.ODO eV. 

A B/F C/H D E G K N 

70.963 
70.830 
70.609 

- 
69.631 

70.962 
70,831 
70.611 
70.383 
69.929 
69.368 

- 

- 
- 
- 
- 
- 
- 
- 
- 

- 
67.204 
66.464 
65.826 
65.556 
65.431 
64.885 
64.495 
63.351 
62.386 

a&S) 64.369 64.368 

al(A) 63.604 63.604 

b,(A) - 63.242 

b,(A) - 61.222 

b,(B) 59.422 59.419 

al(B) - 55.514 

b&3 - 55.052 

(a) Pyridine triplets 
70.962 
70.827 
70.610 
70.385 
69.628 
69.367 
67.663 
67.196 
66.461 
65.823 
65.559 
65.431 
64.886 
64.497 
63.355 
62.379 

70.964 
70.831 
70.610 
70.384 
69.630 
69.369 

- 
67.205 
66.465 
65.825 
65.557 
65.431 
64.886 

- 
63.356 
62.385 

70.962 
70.831 
70.608 
70.384 
69.628 
69.368 
67.664 
67.196 
66.461 
65.825 
65.559 
65.433 
64.888 
64.491 
63.355 
62.381 

(b) Pyridine molecular ions 
64.369 64.368 64.366 
63.602 63.604 63.601 
63.242 63.243 63.239 
61.221 61.224 61.220 
59.421 59.421 59.420 
55.514 55.514 55.512 
55.053 55.052 55.052 

70.961 
70.831 
70.608 
70.384 
69.628 
69.368 
67.663 
67.198 
66.461 
65.824 
65.559 

- 
64.888 
64.492 
65.355 
62.381 

70.959 70.962 
70.827 70.827 
70.608 70.608 
70,383 70.380 
69.628 69.628 
69.365 69.366 
67.667 67.661 
67.200 67.198 
66.462 66.462 
65.823 65.826 
65.555 65.555 
65.434 65.434 
64.885 64.885 
64.492 64.492 
63.353 63.353 
63.382 63.382 

64.366 64.368 64.368 
63.601 63.604 63.604 
63.239 63.243 63.243 
61.221 61.220 61.221 
59.420 59.420 59.420 
55.513 55.511 55.511 
55.052 55.052 55.052 

fundamental theoretical validity of the resymmetrization procedure; it is purely 
empirical. However, Table III shows clearly that the results in total energy are 
indistinguishable whether or not this procedure is invoked, provided the con- 
vergence occurs in either case. Additionally, we have compared the electron 
densities obtained from the density matrix in these cases. These are identical to 
at least three significant figures. We have further compared the energies iteration 
by iteration of the cases in which the symmetry disappeared after a number of 
iterations. As long as the symmetry was obeyed, no significant differences in total 
energies or in electron densities could be discerned. This then provides justification 
for using this empirical adjustment without which the calculations in most cases 
become impossible. 
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The pyridine calculations, however, have provided very little insight into cal- 
culations that do not readily converge. Only a single state, the b,bl configuration, 
appears to fail to converge, and only under one set of conditions, a set involving 
no density matrix averaging and the use of the diagonal density matrix as a starting 
point. In connection with some other work, we have had occasion to run all triplet 
states of azulene. In these calculations, five states gave us problems in convergence. 
We have taken these five plus three other states and subjected them to a similar 
analysis through many different manners of calculation. Since, at this point, we 
had decided that resymmetrization was essential and that total energy convergence 
was sufficient, and since calculations on the much larger azulene are more expensive, 
we have restricted the set of conditions in these two respects. Since the pyridine 
results gave no indication as to the best manner of handling two of the possible 
variation considered: the type of initial density matrix used and the manner of 
density matrix averaging, we have consequently used the azulene calculations to 
carefully test these two variables. The results for the number of iterations required 
to obtain convergence are listed in Table IV. It is immediately obvious the density 
matrix averaging is required to get reasonable convergence as indicated by 
columns I, J, and K. 

TABLE IV 

The Number of Iterations Required to Obtain Convergence for Eight Triplet States 
of Azulene Under the Conditions Indicated in Table I. (D means Divergence 

that goes into Oscillation.) 

I J K L M N 0 P Q 

a&, 14 13 12 9 10 9 9 10 9 
b&l 21 24 23 14 14 13 12 14 13 
twz 20 14 13 16 12 11 16 12 11 
wh 16 D D 18 D D 18 19 18 
ha1 D D D 16 28 21 16 15 20 
bse D D 15 33 16 15 D 14 15 
wh D D 31 30 32 31 D 16 31 
ada D 34 11 15 12 11 15 12 33 

Unfortunately, there is no unambiguous choice among the nine methods listed 
in Table IV. No single set of conditions seems to be clearly superior to any other. 
Overall, the best results seemed to be obtained in columns P and Q, that is, by 
reading in either the ground state or the virtual orbital density matrix, and pro- 
ceding with an unrestricted density matrix averaging. However, we have seen before 
that unrestricted density matrix averaging can also lead to problems, and column 0 
shows two cases of divergence. Overall, then, we believe one must conclude that 
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there is no single set of conditions that can at this point be considered unam- 
biguously superior or to guarantee convergence. For economy reasons, we believe 
the diagonal density matrix with restricted averaging is probably the best starting 
point. It gives convergence in most cases and for the states of low energy which are 
most often of interest and in a relatively low number of iterations, although for 
some situations the number of iterations is substantially higher than in some of 
the other options. Only if convergence problems are encountered here do we believe 
that it is indicated to write a density matrix or a wave function on disk and then 
proceed with unrestricted density matrix averaging from such a starting point. 
Which of the two is better, we cannot specify with the limited experience at hand. 

TABLE V 

The Energies Obtained from the Calculation on Eight Triplet States of Azulene Under 
the Conditions Indicated in Table I. Energies listed are --E-7000.000 eV. 

I J K L M N 0 P Q 

52.887 52,859 52.859 52.867 
50.359 50.355 50.363 50.375 
50.313 50.305 50.305 50.316 
45.695 - - 47.684 

- - - 46.875 
- - - 45.480 
- - - 44.574 
- 44.363 44.363 44.301 

52.871 52.879 52.867 
50.344 50.355 50.387 
50.31 50.320 50.316 

- - 47.684 
46.875 46.875 46.875 
45.480 45.488 - 
44.574 44.574 - 
44.344 44.344 44.301 

52.871 52.879 
50.340 50.363 
50.313 50.305 
47.688 47.691 
46.902 46.875 
45.461 45.488 
44.566 44.574 
44.344 44.344 

Table V lists the energies to which the azulene calculations have converged. It is 
noticed that the constancy in this case is not quite as good as in pyridine. Since 
the total electronic energy is about twice that of pyridine, we might have anticipated 
errors to be of about twice the magnitude. Unfortunately, this is not true. 
The variations among these nine methods in energies reached a maximum of 
0.05 volts although generally they are more within the range of 0.02 volts. It maybe 
that the choice of conditions is, in effect, wider in these experiments than they were 
in the pyridine case, or it may be that the uncertainty rises faster than linear with 
molecular size. However, certainly these data indicate that even in azulene we can 
put confidence into our energies to better than 0.05 eV. 
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